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Abstract— The Electric VLSI Design System is a free 

Electronic Design Automation package that includes different 

tools, as schematic and layout editors, verification tools and a 

Silicon Compiler, among others. This work presents a standard 

cells library designed for the 0.5-µm process, to be used with the 

Silicon Compiler tool in order to synthetize a digital circuit from 

its structural VHDL description. An eight-bit, up/down 

synchronous counter is proposed as an example, with simulation 

results. 
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I.  INTRODUCTION 

 There are several methodologies for the automation of the 

design of digital integrated circuits. One of them is the use of a 

silicon compiler, a tool that, in a general meaning, converts 

some description of the circuit into its actual layout [1, 2]. 

Several approaches for silicon compilers were proposed 

since the first works, that were published at the end of 1970s 

[3]. A great variety of approaches arose after this, as can be 

seen in [4,5]. Nowadays, a silicon compiler can be understood 

as a tool that structures the layout from a circuit description 

using a hardware description language (HDL). To do this, a 

silicon compiler typically makes use of standard cells, that are 

pre-designed and pre-characterized blocks implementing basic 

logic functions [6]. 

Some free or open source Electronic Design Automation 

(EDA) tools were investigated for use in VLSI design courses 

[7]. One of them is the Electric VLSI Design System, a 

complete suite for schematic capture, layout and verification of 

integrated circuits [8].  

If compared with other packages, Electric has a reasonable 

variety of resources and a rapid learning curve. Moreover, the 

package runs under the Java Runtime Environment (JRE), and 

is portable to different operating systems. These factors make it 

as a good software alternative for a one-semester discipline of 

integrated circuits on a graduation course [9].  

One of the resources available in Electric is one silicon 

compilation system called QUISC (Queen’s University 

Interactive Silicon Compiler), a tool that does the placement 

and routing of the standard cells from a schematic or a 

structural VHDL description [10]. 

The Electric has a built-in library of standard cells, that are 

invoked by the QUISC if no specific library is used. However, 

it is explicit in the software manual that the cells contain errors, 

and are used just to illustrate the operation of the tool. Other 

libraries of standard cells were designed in Electric, by other 

laboratories and universities, for different CMOS technologies, 

and are available in [8]. 

A library of standard cells designed for the 0.5-µm process 

[8, 11] was tested with the QUISC. Although these cells are 

compact and free of errors themselves, design rules checking 

(DRC) verification of the layout obtained after silicon 

compilation using these cells reported a great number of errors. 

This paper presents a library of standard cells developed in 

the Electric software, for the 0.5-µm CMOS process, suitable 

for use with the Silicon Compiler. The silicon compilation with 

this library results in a layout with no DRC errors. 

To illustrate the design procedure, an eight-bit, up/down 

synchronous counter was synthetized. The simulation of the 

circuit extracted from the layout was done by using LTSpice, a 

free Spice engine with no node limitation or simulation time 

restrictions. 

The paper is organized as follows: The Section II discusses 

briefly the design methodology used in Electric. Section III 

presents the library of standard cells and their main features. At 

the Section IV, the project of the counter is described, as well 

as the resulting layout and simulation results. The Section V 

presents the conclusions of the work. 

II. THE ELECTRIC DESIGN METHODOLOGY 

First to describe the designed library of standard cells, it is 

interesting to discuss how a cell (analog or digital) is created in 

Electric. Its design methodology can slightly differ from that 

used by commercial tools, and a brief explanation about it can 

illustrate better the motivations for the design of the standard 

cells. 

The layout of a block in Electric is done by using a set of 

primitives called nodes, that can be a pre-configured MOSFET, 

a Poly-to-Metal1 contact, or a NWELL-to-Metal1 contact, as 



examples. All the structures used in a standard CMOS design 

are available as nodes and can be easily scaled. The connection 

between the nodes are done by using arcs, that can be lines of 

metal, active (n or p), well, poly or another layer. 

A cell is then composed by a set of nodes and arcs. The 

connection between a specific cell and other ones is done by 

explicitly indicating the points where a metal line (or another 

layer) has to be connected, acting actually as a pin. These 

points are called exports, and when a cell is instantiated on 

another layout, the Electric does not recognize a connection at 

other points different from the exports.  

The Fig. 1 shows the interconnection between nodes, arcs 

and exports. The cell contains the primitives necessary to 

layout a n-channel MOSFET with all the Metal connections. In 

practice, the Metal-to-Active nodes can be placed close to the 

NMOS node. However, it is necessary to them to be linked by 

an “Active” arc, in order to make an explicitly electrical 

connection. 

The Electric has the MOSIS Scalable Rules (SCMOS) 

built-in [12]. A layout developed under these rules makes use 

of a parameter lambda (λ), that defines the minimum spacing 

and distance rules. For a 0.5-µm process, it is set λ = 300 nm. 

A minimum channel length in SCMOS rules is 2λ, so it has             

0.6 µm for the referred process.  

III. THE LIBRARY OF STANDARD CELLS 

The designed library was created by placing the exports in 

order to allow the vertical connections with Metal-2, while the 

power rails and the horizontal connections are made with 

Metal-1. The exports are intentionally misaligned, so that a 

vertical line that connect to an export cannot pass across 

another export in that cell. A distance between the exports is 

also needed in order to avoid spacing errors between the 

vertical Metal-2 lines. A generic representation of a cell is 

given in Fig. 2. The chosen distance between rails was of 93λ 
(27.9 µm), and the power rails width is of 8λ (2.4 µm).  

The basic inverter is shown in Fig. 3a. For this cell, the gate 

capacitance, obtained by simulation, is approximately 11.5 fF. 

Other three cells are shown: two-input NAND gate (Fig. 3b); 

tristate gate (Fig. 3c), and a transmission gate (Fig. 3d). 

 

Fig. 1. A simple layout illustrating examples of nodes, arcs and exports                     

in Electric. 

The cells were designed according to the SCMOS rules. All           

the transistors have the minimum allowable channel length, 2λ 
(0.6 µm). For all the cells, the bulk contacts are present.  

The cells were extracted and simulated in LTSpice, in order 

to achieve their parameters. The basic inverter capacitance 

(~11.5 fF) was used as a load. The Table I shows the list of 

cells and their parameters. 
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Fig. 2. A generic representation of a cell. Horizontal lines are of Metal 1,     

and vertical lines of Metal 2. 
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Fig. 3. Layouts of four cells: (a) Basic inverter (b) Two-input NAND;                

(c) Tristate gate; (d) Transmission gate. 



If compared to the 0.5-µm library available in [8], these 

cells have, in general, a greater area. This was done in order to 

let an automatic routing without DRC errors. The application 

of this library on silicon compilation is shown in the next 

section. 

TABLE I.  PARAMETERS OF THE STANDARD CELLS.                              
CONDITION: CL = ~11.5 fF. TIMES ARE EXPRESSED IN PICOSSECONDS. 

Cell Rising 

time 

Falling 

time 

Rising 

delay 

Falling 

delay 

Area 

(µm2) 

And2 227 169 316 422 945.5 

And3 247 184 342 436 1074 

Buffer1x 202 132 186 345 743.6 

Buffer4x 89 85 89 284 789.5 

Inv1x 335 288 283 56.5 459 

Inv4x 228 220 210 34.5 395 

Nand2 386 405 351 163 555.4 

Nand3 481 494 368 213 734.4 

Nor2 396 310 340 55.3 642.6 

Nor3 825 394 530 104 784.9 

Or2 214 184 252 490 945.5 

Or3 221 235 260 588 1101.6 

Transm 839 770 37.5 37.3 636.3 

Trist 563 386 379 93.3 605.9 

 

IV. DESIGN OF AN 8-BIT UP/DOWN COUNTER 

To illustrate the application of the standard cells library 

using the QUISC, the design of an eight-bit synchronous 

up/down counter, with Preset and Clear asynchronous inputs, 

is described.  

The Electric accepts VHDL and Verilog entries, and the 

design started with the structural VHDL description of the 

circuit. Unlike the behavioral VHDL (or other behavioral 

HDL), that describes what the cell does (at a higher level of 

abstraction), the structural VHDL specifies how a cell is 

composed by other cells or primitive gates [13]. 

The up/down counter is composed by a regular 

arrangement of blocks like the one illustrated in Fig. 4. It is 

formed by a JK Flip Flop (cell 1), two AND gates (cells 2, 3) 

and an OR gate (cell 4). For the first bit (Q[0]), S(0) is 

connected to VDD, and the counting sequence is determined by 

setting Up(0) or Down(0) equal to 1. The outputs Up(1) and 

Down(1) are connected to inputs Up(0) and Down(0) of the 

following cell, for the next bits. The master-slave JK FF with 

asynchronous inputs was used, and its schematics is depicted 

in Fig. 5. 

 

Fig. 4. Schematic of the block regularly placed to construct the 8-bit counter.  

 

Fig. 5. Schematic of the JK FF. 

 

By using the GENERATE statement, the arrangement of 

blocks related to outputs Q[1] to Q[7] can be described by the 

structural VHDL code shown in Fig. 6, which is part of the 

complete code that describes the counter (for the block related 

to output Q[0], the code is slightly different). To give a better 

understanding of the code, the identifying number of the cells 

in Figs. 4 and 5 are placed as comments at each corresponding 

line.  

Once written the structural VHDL code, the Electric 

converts it into a Netlist file. Then, the QUISC synthesizes the 

layout of the circuit. The given layout for the counter is shown 

in Fig. 7. A DRC verification showed that no errors were 

found. 

The circuit was extracted in Electric and simulated in 

LTSpice using the 0.5-µm BSIM models. By using the 

nominal supply voltage (5 V), configuring the circuit as an up 

counter and applying a 1 MHz input clock signal, the transient 

simulation produced the results shown in Fig. 8. By 

configuring the circuit as a down counter, the results (not 

shown) were also according to the expected. 

 

 

Fig. 6. Part of the structural VHDL code. 

 

 



 

Fig. 7. Layout of the synchronous counter generated by the silicon compiler. 

 

Fig. 8. Transient simulation of the circuit extracted from the layout. The 

counter was configured in “Up” mode. 

V. CONCLUSIONS 

This paper presented a library of standard cells suitable 

for use with QUISC, the Electric’s Silicon Compiler. The cells 

were designed for a standard 0.5-µm technology, under the 

SCMOS rules. In general, the areas of the cells are larger than 

those obtained in another library designed for the 0.5-µm 

process. However, it was verified that the layout compiled 

using this library is free of errors. 

As an example, the layout of an 8-bit up/down 

synchronous counter was proposed. After the well succeeded 

silicon compilation, the simulation results showed that the 

circuit presented the expected behavior.  

The expansion of the library, by including new cells, is 

considered as a future work.  
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