
A Library of Standard Cells Suitable for Use on a

Free EDA Silicon Compiler Tool

Carlos R. dos Santos, Estêvão C. Teixeira

Engineering College

Federal University of Juiz de Fora – UFJF

Juiz de Fora – MG, Brazil

carlos.rafael@engenharia.ufjf.br, estevao.teixeira@ufjf.edu.br

Abstract— The Electric VLSI Design System is a free

Electronic Design Automation package that includes different

tools, as schematic and layout editors, verification tools and a

Silicon Compiler, among others. This work presents a standard

cells library designed for the 0.5-µm process, to be used with the

Silicon Compiler tool in order to synthetize a digital circuit from

its structural VHDL description. An eight-bit, up/down

synchronous counter is proposed as an example, with simulation

results.

Keywords—Standard cells; silicon compiler; digital circuits;

free EDA tools; structural VHDL

I. INTRODUCTION

 There are several methodologies for the automation of the

design of digital integrated circuits. One of them is the use of a

silicon compiler, a tool that, in a general meaning, converts

some description of the circuit into its actual layout [1, 2].

Several approaches for silicon compilers were proposed

since the first works, that were published at the end of 1970s

[3]. A great variety of approaches arose after this, as can be

seen in [4,5]. Nowadays, a silicon compiler can be understood

as a tool that structures the layout from a circuit description

using a hardware description language (HDL). To do this, a

silicon compiler typically makes use of standard cells, that are

pre-designed and pre-characterized blocks implementing basic

logic functions [6].

Some free or open source Electronic Design Automation

(EDA) tools were investigated for use in VLSI design courses

[7]. One of them is the Electric VLSI Design System, a

complete suite for schematic capture, layout and verification of

integrated circuits [8].

If compared with other packages, Electric has a reasonable

variety of resources and a rapid learning curve. Moreover, the

package runs under the Java Runtime Environment (JRE), and

is portable to different operating systems. These factors make it

as a good software alternative for a one-semester discipline of

integrated circuits on a graduation course [9].

One of the resources available in Electric is one silicon

compilation system called QUISC (Queen’s University

Interactive Silicon Compiler), a tool that does the placement

and routing of the standard cells from a schematic or a

structural VHDL description [10].

The Electric has a built-in library of standard cells, that are

invoked by the QUISC if no specific library is used. However,

it is explicit in the software manual that the cells contain errors,

and are used just to illustrate the operation of the tool. Other

libraries of standard cells were designed in Electric, by other

laboratories and universities, for different CMOS technologies,

and are available in [8].

A library of standard cells designed for the 0.5-µm process

[8, 11] was tested with the QUISC. Although these cells are

compact and free of errors themselves, design rules checking

(DRC) verification of the layout obtained after silicon

compilation using these cells reported a great number of errors.

This paper presents a library of standard cells developed in

the Electric software, for the 0.5-µm CMOS process, suitable

for use with the Silicon Compiler. The silicon compilation with

this library results in a layout with no DRC errors.

To illustrate the design procedure, an eight-bit, up/down

synchronous counter was synthetized. The simulation of the

circuit extracted from the layout was done by using LTSpice, a

free Spice engine with no node limitation or simulation time

restrictions.

The paper is organized as follows: The Section II discusses

briefly the design methodology used in Electric. Section III

presents the library of standard cells and their main features. At

the Section IV, the project of the counter is described, as well

as the resulting layout and simulation results. The Section V

presents the conclusions of the work.

II. THE ELECTRIC DESIGN METHODOLOGY

First to describe the designed library of standard cells, it is

interesting to discuss how a cell (analog or digital) is created in

Electric. Its design methodology can slightly differ from that

used by commercial tools, and a brief explanation about it can

illustrate better the motivations for the design of the standard

cells.

The layout of a block in Electric is done by using a set of

primitives called nodes, that can be a pre-configured MOSFET,

a Poly-to-Metal1 contact, or a NWELL-to-Metal1 contact, as

examples. All the structures used in a standard CMOS design

are available as nodes and can be easily scaled. The connection

between the nodes are done by using arcs, that can be lines of

metal, active (n or p), well, poly or another layer.

A cell is then composed by a set of nodes and arcs. The

connection between a specific cell and other ones is done by

explicitly indicating the points where a metal line (or another

layer) has to be connected, acting actually as a pin. These

points are called exports, and when a cell is instantiated on

another layout, the Electric does not recognize a connection at

other points different from the exports.

The Fig. 1 shows the interconnection between nodes, arcs

and exports. The cell contains the primitives necessary to

layout a n-channel MOSFET with all the Metal connections. In

practice, the Metal-to-Active nodes can be placed close to the

NMOS node. However, it is necessary to them to be linked by

an “Active” arc, in order to make an explicitly electrical

connection.

The Electric has the MOSIS Scalable Rules (SCMOS)

built-in [12]. A layout developed under these rules makes use

of a parameter lambda (λ), that defines the minimum spacing

and distance rules. For a 0.5-µm process, it is set λ = 300 nm.

A minimum channel length in SCMOS rules is 2λ, so it has

0.6 µm for the referred process.

III. THE LIBRARY OF STANDARD CELLS

The designed library was created by placing the exports in

order to allow the vertical connections with Metal-2, while the

power rails and the horizontal connections are made with

Metal-1. The exports are intentionally misaligned, so that a

vertical line that connect to an export cannot pass across

another export in that cell. A distance between the exports is

also needed in order to avoid spacing errors between the

vertical Metal-2 lines. A generic representation of a cell is

given in Fig. 2. The chosen distance between rails was of 93λ
(27.9 µm), and the power rails width is of 8λ (2.4 µm).

The basic inverter is shown in Fig. 3a. For this cell, the gate

capacitance, obtained by simulation, is approximately 11.5 fF.

Other three cells are shown: two-input NAND gate (Fig. 3b);

tristate gate (Fig. 3c), and a transmission gate (Fig. 3d).

Fig. 1. A simple layout illustrating examples of nodes, arcs and exports

in Electric.

The cells were designed according to the SCMOS rules. All

the transistors have the minimum allowable channel length, 2λ
(0.6 µm). For all the cells, the bulk contacts are present.

The cells were extracted and simulated in LTSpice, in order

to achieve their parameters. The basic inverter capacitance

(~11.5 fF) was used as a load. The Table I shows the list of

cells and their parameters.

+ +

+ +

VDD VDD_1

GND GND_1

+ A

B
+

+
C

+
Y

9
3
l

8
l

8
l

Fig. 2. A generic representation of a cell. Horizontal lines are of Metal 1,

and vertical lines of Metal 2.

(a) (b)

(c) (d)

Fig. 3. Layouts of four cells: (a) Basic inverter (b) Two-input NAND;

(c) Tristate gate; (d) Transmission gate.

If compared to the 0.5-µm library available in [8], these

cells have, in general, a greater area. This was done in order to

let an automatic routing without DRC errors. The application

of this library on silicon compilation is shown in the next

section.

TABLE I. PARAMETERS OF THE STANDARD CELLS.
CONDITION: CL = ~11.5 fF. TIMES ARE EXPRESSED IN PICOSSECONDS.

Cell Rising

time

Falling

time

Rising

delay

Falling

delay

Area

(µm2)

And2 227 169 316 422 945.5

And3 247 184 342 436 1074

Buffer1x 202 132 186 345 743.6

Buffer4x 89 85 89 284 789.5

Inv1x 335 288 283 56.5 459

Inv4x 228 220 210 34.5 395

Nand2 386 405 351 163 555.4

Nand3 481 494 368 213 734.4

Nor2 396 310 340 55.3 642.6

Nor3 825 394 530 104 784.9

Or2 214 184 252 490 945.5

Or3 221 235 260 588 1101.6

Transm 839 770 37.5 37.3 636.3

Trist 563 386 379 93.3 605.9

IV. DESIGN OF AN 8-BIT UP/DOWN COUNTER

To illustrate the application of the standard cells library

using the QUISC, the design of an eight-bit synchronous

up/down counter, with Preset and Clear asynchronous inputs,

is described.

The Electric accepts VHDL and Verilog entries, and the

design started with the structural VHDL description of the

circuit. Unlike the behavioral VHDL (or other behavioral

HDL), that describes what the cell does (at a higher level of

abstraction), the structural VHDL specifies how a cell is

composed by other cells or primitive gates [13].

The up/down counter is composed by a regular

arrangement of blocks like the one illustrated in Fig. 4. It is

formed by a JK Flip Flop (cell 1), two AND gates (cells 2, 3)

and an OR gate (cell 4). For the first bit (Q[0]), S(0) is

connected to VDD, and the counting sequence is determined by

setting Up(0) or Down(0) equal to 1. The outputs Up(1) and

Down(1) are connected to inputs Up(0) and Down(0) of the

following cell, for the next bits. The master-slave JK FF with

asynchronous inputs was used, and its schematics is depicted

in Fig. 5.

Fig. 4. Schematic of the block regularly placed to construct the 8-bit counter.

Fig. 5. Schematic of the JK FF.

By using the GENERATE statement, the arrangement of

blocks related to outputs Q[1] to Q[7] can be described by the

structural VHDL code shown in Fig. 6, which is part of the

complete code that describes the counter (for the block related

to output Q[0], the code is slightly different). To give a better

understanding of the code, the identifying number of the cells

in Figs. 4 and 5 are placed as comments at each corresponding

line.

Once written the structural VHDL code, the Electric

converts it into a Netlist file. Then, the QUISC synthesizes the

layout of the circuit. The given layout for the counter is shown

in Fig. 7. A DRC verification showed that no errors were

found.

The circuit was extracted in Electric and simulated in

LTSpice using the 0.5-µm BSIM models. By using the

nominal supply voltage (5 V), configuring the circuit as an up

counter and applying a 1 MHz input clock signal, the transient

simulation produced the results shown in Fig. 8. By

configuring the circuit as a down counter, the results (not

shown) were also according to the expected.

Fig. 6. Part of the structural VHDL code.

Fig. 7. Layout of the synchronous counter generated by the silicon compiler.

Fig. 8. Transient simulation of the circuit extracted from the layout. The

counter was configured in “Up” mode.

V. CONCLUSIONS

This paper presented a library of standard cells suitable

for use with QUISC, the Electric’s Silicon Compiler. The cells

were designed for a standard 0.5-µm technology, under the

SCMOS rules. In general, the areas of the cells are larger than

those obtained in another library designed for the 0.5-µm

process. However, it was verified that the layout compiled

using this library is free of errors.

As an example, the layout of an 8-bit up/down

synchronous counter was proposed. After the well succeeded

silicon compilation, the simulation results showed that the

circuit presented the expected behavior.

The expansion of the library, by including new cells, is

considered as a future work.

REFERENCES

[1] N. H. E. Weste, K. Eshraghian, Principles of CMOS VLSI Design – A
systems Perspective. Addison-Wesley, 1985.

[2] S. Rubin, Compute Aids for VLSI Design. 2nd edition, 1994 [online].
Available in: http://www.rulabinsky.com/cavd/.

[3] D. Johannsen, “Bristle blocks: a silicon compiler”. In: 16th Conference
on Design Automation, San Diego, USA, 1979.

[4] W. Curtis, “Silicon compilation: the future is now: Silicon compilers
liberate the integrated circuit design process”. IEEE Potentials, vol. 5,
no. 2, p. 27-29, 1986.

[5] M. Kahrs, “Silicon compilation of very high level language”. IEEE
Transactions on Computer Aided Design, vol. 11, no. 10, pp. 1227-1246,
1992.

[6] C. Nunes, L. Puricelli, L. H. Reinicke et al., “CTC06 standard cell
library design”. In: 6th Workshop on Circuits and Systems Design –
WCAS 2016 (Chip on the Mountains). Belo Horizonte, Brazil, 2016.

[7] E. Kougianos, S. P. Mohanty, P. Patra, “Digital nano-CMOS VLSI
design courses in electrical and computer engineering through open-
source/free tools”. In: 2010 International Symposium on Electronic
System Design – ISED, Bhubaneswar, India, 2010.

[8] Static Free Software, www.staticfreesoft.com.

[9] P. P Domingues, R. V. Almeida, E. C. Teixeira, “Uso de software livre
em atividades de ensino e pesquisa em microeletrônica” (in portuguese).
In: XLIV Congresso Brasileiro de Educação em Engenharia –
COBENGE 2016. Natal, Brazil, 2016.

[10] S. Rubin, “Electric User’s Manual, version 9.07”. Available in:
http://www.staticfreesoft.com/jmanual/index.html.

[11] J. Baker, Electric VLSI Design System at CmosEdu [online]. Available
in: cmosedu.com.

[12] The MOSIS Service, “MOSIS Scalable CMOS (SCMOS)”. Revision
8.00, 2009. Available in: https://www.mosis.com/files/scmos/scmos.pdf

[13] N. H. E. Weste, D. M. Harris, CMOS VLSI Design – A Circuits and
Systems Perspective. 4th edition, Addison-Wesley, 2011.

	I. Introduction
	II. The Electric design methodology
	III. The library of standard cells
	IV. Design of an 8-bit up/down counter
	V. Conclusions
	References

